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ABSTRACT

A mathematical model is presented, which reproduces typical dynamic range compression, when given the
nominal input envelope of the signal and the compression constants. The model is derived geometrically
in a qualitative approach and the governing differential equation for an arbitrary input and an arbitrary
compressor is found. Step responses compare well to commercial compressors tested. The compression effect
on speech using the general equation in its discrete version is also demonstrated. This model applicability
is especially appealing to hearing aids, where the input-output curve and time constants of the non-linear
instrument are frequently consulted and the qualitative theoretical effect of compression may be crucial for
speech perception.

1. INTRODUCTION

Audio dynamic range compression is almost always
met in today’s hearing aids. The positive effect
of reducing the perceived dynamic range of signals
on speech intelligibility for the hearing-impaired has
been well-established (e.g. see [1, 2]). How com-
pressors work is often explained schematically in the
audiological literature, using input-output and de-
cay curves of signal envelopes. The underlying im-
plementation of compression may vary significantly
between designs, depending on the envelope detec-

tion architecture, control of dynamic attenuation
and other factors. In spite of its popularity, there
have been only a handful of published mathemati-
cal compression models in literature [3, 4, 5]. These
models, however, have not been used in the con-
text of hearing aid research to-date, as compression
effects of hearing aids are often tested directly in
clinical settings. Nevertheless, the benefit of hav-
ing such a model available should not be underes-
timated, since they can offer both new perspectives
on clinical findings, as well as assist with the de-
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signs of new instruments. We would like to suggest
a new top-level model that would be easier to use
along with hearing aids, as well as some other audio
applications. The model deals directly with signal
envelopes and does not assume a specific topology.
It may allow for an analytical solution to be obtained
of simple input signals to the system.

2. BACKGROUND

2.1. Dynamic Range Compression

At the heart of the compressor there is an enve-
lope detector that follows the slow changes of the
input/output signal level. The compressor has a
predefined attenuation for its input signal, which de-
pends on the detected level. The exact attenuation
is set according to the compression ratio, or the slope
of the input-output (I/O) curve (the “compression-
law”). The I/O curve is normally defined logarith-
mically, so that it is linear in the log representation
(but non-linear otherwise). Often the compressor is
linear and does not attenuate below a certain input
compression threshold (kneepoint), and compressing
above it.

The compressor is also characterized by two time
constants, which control its speed of changing the
gain, between points on the compression law func-
tion. The release time is the nominal time it takes
the compressor to update its gain, when the input
signal level decreases within the compressing region.
Conversely, the attack time is the time that it takes
to update the compressor gain, when the input level
increases.

The effective long-term result of compression is a
certain reduction in the dynamic range of the output
signal, but otherwise minimal effect on the spectral
information of the input. The various constants of
the compressor determine the extent of this reduc-
tion, in addition to determining the range of the in-
put signal that is actually being compressed (above
compression threshold).

The implementation of dynamic range compression
can be executed in a number of ways. Such a sys-
tem has either one of several envelope detection cir-
cuit possibilities that follows the output signal (feed-
back) or the input signal (feedforward). The de-
tected value is then fed-back or fed-forward to an

attenuator, which adjusts the gain according to the
compression-law [3]. The ample choice of compres-
sor design possibilities results in a wide gamut of
behaviors.

2.2. Existing Compression Models

Only a handful of models were found in recent litera-
ture that develop the general governing equations of
compressors. Unlike particular compressor designs,
those models use the compression circuit constants
(i.e. ratio, threshold, release and attack times) and
an arbitrary input signal to come up with the gen-
eral functional representations of the output signal,
according to specific operational principles.

Oliveira developed basic static and dynamic com-
pression temporal transfer functions based on sim-
ple block diagrams, in order to determine the ideal
topology of his feedforward compressor design [6].
The equations are voltage based and eventually do
not provide a full picture of an arbitrary time-signal
that is fed into the system and therefore do not con-
stitute a complete model.

Floru [3] developed accurate models for feedback
and feedforward RMS-detection-based linear and
logarithmic compression. This detailed analysis is
founded on sound electronic basis, which yields accu-
rate results for such designs. Integral transfer func-
tions are derived for the complete time signals. Im-
portantly, he also derives total harmonic distortion
levels as a function of frequency.

In another model, Abel and Berners [4] derived
differential equations that govern RMS- and peak-
detected feedback and feedforward compressors,
based on simple electronic concepts. They dwell
on the differences between feedback and feedfor-
ward topologies and their results agree with those
of Floru.

In the last model developed by Simmer et al. [5]
an algorithmic approach is introduced using differ-
ence equations, which is readily applicable on digi-
tal platforms. The authors compared their model to
commercial compressors and optimized the fitting.
The results are based on the specific way in which
the measured compressors were designed. A similar
approach was applied to model earlier the compres-
sion in the human hearing system by Glasberg and
Moore in their loudness model [7].
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2.3. Compression in Hearing Aids

Compression is almost ubiquitous in modern digital
hearing aids. It is introduced in order to compensate
for loudness-recruitment in sensorineural hearing-
impairments [8], enable listening comfort and for
some other reasons [1]. Its effect has been stud-
ied for many decades since its hesitant introduc-
tion in the 1930-40’s and it appears to be a compli-
cated one that is dependent on many variables (for
the early-historical review, see Caraway and Carhart
[9]). Multi-band compressors are also very common
in hearing aids to offset the changing hearing loss
depth over frequency. Compression interacts inti-
mately with the speech – by decreasing the dynamic
range of the sentence, words or even syllables them-
selves and in the case of multi-band compression, by
reducing the spectral variation of speech. Those ef-
fects are described best by referring directly to the
speech envelope [10] and the corresponding reaction
of the compressor. Much research has dealt directly
with the envelope of the compressed vs. uncom-
pressed or peak-clipped speech and its perception
by the hearing-impaired.

For the hearing aid professional (audiologist,
ENT physician, speech-language-hearing patholo-
gist, etc.) the exact mechanism by which the hear-
ing aid compression is implemented is unknown and
largely uninteresting. It is usually described using
its I/O curve, along with the above-mentioned con-
stants. Those are supposed to communicate univer-
sally, irrespective of the internal operational princi-
ple. For more information, see, for instance, reviews
by Souza[2], Moore[11] and Kuk[12].

This rough operational understanding of compres-
sion in hearing aids is much like many of the popular
software plug-in compressors used for audio mixing
and mastering, which often display the I/O curve
graphically, but do not really reveal the algorithms
underneath it.

3. COMPRESSION MODEL

3.1. Model Rationale

Despite the existence of the above-mentioned com-
pression models, a new one is suggested with the
primary intent to facilitate the analysis of certain
hearing-aid related compression behaviors.

Often, the merit of analytical models is their ability
to give insight to the user, simply by looking at the
general closed-form results. Current models lack in
this ability, especially since the different compres-
sion parameters (e.g. ratio, threshold) cannot be
always directly used in them. In the hearing aid
world it is common to think in envelopes and the
I/O curve is the most universal way to characterize
compressors. The analytic models available [3, 4] are
also not straightforward when it comes to factoring
in the compression threshold in a complete signal,
i.e. the fact that typical the input signal crosses the
compression threshold numerous times and by that
changes its subjection to it. We would like to have
a model that:

1. does not assume architecture (such as feedback
or feedforward)

2. does not assume detection method
(RMS/peak/average). This can be com-
puted separately beforehand

3. is formulated in a way that gives us insight with
regards to its measurable parameters. Other
implicit constants such as reference voltage are
to be avoided

4. is translatable to the hearing aid vocabulary
and can be used with raw sound pressure levels
(SPL). The input and output could be used in
final and not intermediate units

5. can be used for analog and digital systems alike

In the presented model, we attempt to trade off elec-
tronic and DSP rigor for higher accessibility and ver-
satility to the average user, who either lacks the de-
sign specifications of the instrument he/she uses, or
is simply uninterested in them. The following model
is based on top-level principles of operation. It does
not assume any actual methods of implementation,
but rather describes the final output of an ideal com-
pressor, which works according to standard defini-
tions in the logarithmic domain. Any implementa-
tion of such model is likely going to deviate from it,
simply because it does not emanate from any specific
electronic or DSP architecture, but adheres to the
verbal compression definition, as is often described
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in the hearing aid and audio production world. In
this sense it is qualitative.

3.2. Static Model

The formulae that are developed below are merely
models. They do not indicate the internal process
inside this or that compressor, but only describe
its supposed aggregate behavior. Additionally, they
deal explicitly only with broadband compression and
time-amplitude phenomena. Multi-band compres-
sion should be dealt with separately, although the
model here may be harnessed for that analysis sim-
ply by adding the appropriate band-pass filters to
it.

Any analytic signal, s(t), can be decomposed into
an envelope and an instantaneous phase [13]. It can
written as:

s(t) = x(t) cos [2πfct+ θ(t)] (1)

where x(t) is the envelope, fc is a center frequency
and θ(t) is the instantaneous phase of the signal.
Compression works on the slowly varying envelope
of an input signal by modifying the gain dynam-
ically accordingly. How the envelope is extracted
from the input signal is subject to the particular de-
sign. Generally, an envelope detector could be either
one of the so-called RMS, peak or averaging detec-
tors [3, 14]. In the sections below, input and output
RMS/envelope levels are called for convenience in-
put and output levels, in short.

A general compressor can be represented graphically
using its I/O curve (see Figure 1). It is a variation
on the gain curve in steady-state operation. When
the output is equal to the input, there is no effective
gain change and the gain is 0dB. This is represented
by a 45◦ slope of y = x , y being the output and x the
input. When there is compression in action, there is
an effective gain reduction of the output, compared
to this zero gain line. The attenuation increases with
growing inputs, according to the compression ratio.
These two states – linear (no-gain) and compression
(level-dependent attenuation) – are both observable
in typical compressors.

The following is a functional form of a general com-
pressor, which can have any ratio below or above its
single sharp kneepoint, as is often the case with the

popular wide-dynamic-range-compression (WDRC)
in hearing aids. The time dependence is only im-
plied, as the curve shows the static steady-state of
the compressor and not the transitory states:

ys(x(t)) =















x(t)

CL
+M x ≤ K

x(t)−K

CH
+

K

CL
+M x ≥ K

(2)

x(t) is the time-dependent input envelope in dB. y(t)
is the output envelope in dB. Be it RMS, peak or
average, it will have the same envelope interpreta-
tion as the input detected envelope type. Occasion-
ally there is a so-called makeup gain, M , that is
applied to the signal. It is a level- and frequency-
independent gain. In the rest of the discussion we
shall set the makeup gain to zero for convenience.

CL and CH are the compression ratios below the
kneepoint and above it respectively. A value of unity
designates linear response (zero gain). Values larger
than unity stand for compression and values smaller
than unity for expansion.

K is the sharp kneepoint, or compression thresh-
old, in dB (peak or RMS with respect to the input
and output units). The threshold need not be sharp
(“soft-knee”) and its softness varies between differ-
ent designs. In that case, the two piecewise segments
may be asymptotic lines of the continuous compres-
sion function. The compression ratio is then the lo-
cal derivative of the function, rather than a constant
factor. Additionally, in comlext designs, there may
be multiple kneepoints. However, for the purpose of
the discussion here, there is only one kneepoint that
is kept sharp, for simplicity.

This piecewise function is continuous between its
segments. It includes the most general case of having
compression/expansion/limiting or linear response
on either side of the kneepoint, without loss of gener-
ality. The knee point separates a region compressed
by ratio CL from a compressed region, which is com-
pressed by a ratio CH . If CH is very high or infinity,
it works like a limiter, where the output signal is
absolutely bound. See figure 1 for a complementary
graphical description of the various static compres-
sion constants.
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Fig. 1: Basic input output curves of two compres-
sors: the thin line represents a compressor/limiter,
which is linear below its kneepoint; The bold
line represents a wide-dynamic-range compressor
(WDRC) with compression ratios CL and CH and
makeup gain M . Both have kneepoints at the same
input level, but they correspond to different out-
puts. Various definitions of the kneepoint may actu-
ally shift it upwards on the curve, according to the
amount of attenuation achieved at that point.

We can translate the static response into static gain,
Gs, applied on the original signal, using:

Gs(x(t)) = ys(t)− x(t) (3)

which is either zero or negative (in dB) in case of
compression. The output signal from the compressor
is thus:

so(t) = si(t) +Gs(t) (4)

si(t) being the complete input signal to the compres-
sor.

3.3. Dynamic Model, General Solution

Let us inspect the time dependency of the compres-
sor. We already know that the direction matters,
whether the input level increases or decreases with
time, due to the different values of attack and release
(hysteresis). This is equivalent to saying that we ex-
pect a dependency on the input first time derivative,
as well as on the input itself.

In the hearing aid world, we are generally more in-
terested in the release time, since the attack time is
often very fast. However, save for the actual con-
stants and sign differences, the attack and release
behave in the same way model-wise and the full so-
lution to both is derived commonly.

For simplicity, we shall assume a linear response be-
low the kneepoint, so that CL = 1. Hence, we shall
designate CH = C.

What happens exactly when the input level changes?
As long as the input level is constant, its correspond-
ing output gain is determined uniquely by the point
on either one of the I/O curves in figure 1. When the
input level changes, the immediate output after the
change has initiated still maintains the same gain as
was applied for the previous input level. At this in-
stant, the output is either below or above the steady-
state curve, unless the change occurred within the
linear segment only. It would be below the curve,
when the signal decreases in level. The compressor
at first attenuates it too much and has to update its
attenuation to be relaxed according to the current
lower input level. Conversely, the new point would
be above the curves, when the input signal increases
in level. Then the compressor does not attenuate
it enough and has to update the attenuation to be
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Fig. 2: Calculation of the dynamic compression us-
ing the input/output curve. During release the path
p is defined as positive length.

increased. The characteristic time for those updates
is defined by the release and attack time constants.
The release time determines the reaction time for
input level decreases. The attack time does that for
input increases.

For both types of actions, we are always interested
to know the difference between the two points: the
current point outside of the steady-state curve and
the one on the curve, which maps the same input
level to the prescribed output level. The time con-
stants of the compressor dominate the duration of
the attenuation update over that difference.

Let p be defined as the path difference in dB between
the target gain and the actual gain, before the com-
pressor reacts. In that case the updated output looks
like

yd(x(t), t) = ys(x(t))− p [yd(x(t), t)] (5)

yd is the dynamic output envelope and ys is the
static output as was defined in eq. 2. The differ-
ence function p is also a function of y. However, it
will become obvious that p depends on the previous
condition of the system.

It should be noted that there is no difference between
attack and release in terms of the equations followed

Fig. 3: Calculation of the dynamic compression us-
ing the input/output curve. During attack the path
p is defined as negative length.

here. A positive p value corresponds to release and
negative value to attack transitions. This is in con-
tradiction to previous models, where the attack are
release were modeled independently of one another
[4, 15].

In order to find a complete expression for p and later
on for yd, we shall look at an arbitrary I/O point and
the path it makes on the input-output plane on the
way to a subsequent point in time. Each point has its
corresponding distance from the steady-state curve.
We calculate geometrically the dependence of p of
one point on the second point. The difference func-
tion is scalar and relates only to the distance, but
not to specific coordinates in the I/O space. This
is schematically shown in figures 2 and 3 and is de-
scribed by the following:

p2 = p1 + (ys2 − ys1)− (yd2 − yd1)− p1
δt

τ
(6)

where p2 is the path difference function subsequent
to p1. ys2 and ys1 are the two static compression
points that can be readily calculated as a function
of the input. yd1 is the initial output of the first
point. yd2 is the output immediately when the input
changes. At this point the compressor still applies
the same gain to the input as the previous input and
thus it is a brief duration of linearity. The last term
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represents the actual action of the compressor to di-
minish the absolute difference from the target gain.
It is proportional to the last recorded difference and
to the duration of the transition. It is assumed to
be first order correction and thus it is indirectly pro-
portional to time constant of the compressor.

We also implied that yd1 and yd2 are linearly related,
as they both follow the same instantaneous gain of
the compressor. Hence we can write:

yd2 − yd1 = x2 − x1 = ∆x (7)

Setting p2 = p(t + δt), p1 = p(t), ys2 = ys(t + δt)
and ys1 = ys(t) yields an explicit time relation of
the path difference:

p(t+ δt) = p(t) + [ys(t+ δt)− ys(t)]−∆x− p(t)
δt

τ
(8)

Using the definition of the derivative of p:

lim
δt→0

p(t+ δt)− p(t)

δt
=

dp(t)

dt
= p′(t) (9)

Rearranging the terms, we derive an ordinary differ-
ential equation of p:

p′(t) =
dys

dt
−

dx

dt
−

1

τ
p(t) (10)

Finally, from eq. 2 we know that ys does not depend
directly on t, but rather indirectly through its x(t)
dependency. This translates into:

dys

dt
=

∂ys

∂x
·
dx

dt
(11)

Using eq. 11 in eq. 10 and further rearranging we
conclude with:

p′(t) +
1

τ
p(t) =

dx

dt

(

∂ys

∂x
− 1

)

(12)

This neat ordinary differential equation has an inter-
esting inhomogeneous term on the right. The deriva-
tive of the input signal suggests causality. When the
input envelope is constant, its derivative is 0 and the
compressor would be stay in a steady-state. Then,
the input derivative of the static input is simply the
compression ratio. In linear regions it is equal to 1

and the compressor need not work. In both cases,
the inhomogeneous equation is reduced to a homo-
geneous one with a trivial solution.

Finally, the solution to eq. 12 can be used in eq. 5
to get the output envelope of the compressor.

We normally differentiate the attack and release de-
cay functions. When the output signal is above
the desired target of the steady-state curve, i.e.
ys(x(t))− yd(x(t), t) is negative, it is attenuated us-
ing the attack time constant. When it is below the
target curve (ys(x(t)) − yd(x(t), t) is positive), it is
de-attenuated using the release time constant. Oth-
erwise, the equations are identical.

The interpretation of all of the above is as follows.
There is an input signal x(t), whose level changes
with time. The compressor should bring this signal
to a desired output level of ys(x(t)). However, it
cannot bring it to that output immediately. It con-
stantly measures the gain difference p(y, t) between
the current output level and the target output level
and works to decrease it. While the input changes its
level with time, the compressor is busy correcting the
previous output level of the last measured input. So
when the output of the new input x(t+ δt) has been
recorded, the compressor has just corrected the pre-
vious level yd(t) by a small amount. This amount is
indirectly proportional to the compressor time con-
stant and proportional to the last recorded p. We
shall require that for any solution of p at t ≫ τA,R

eq. 5 converges to eq. 2, given that the input level
has been constant for a while.

3.4. Dynamic Model, A Particular Solution

The equations above may become quite compli-
cated for arbitrary inputs as the system is non-linear
(given the affine steady state function with input-
dependent time derivative and the direction depen-
dent time constants). However, we can find a closed
solution for a simple input signal. Much like the
standard methods of measuring attack and release
times in hearing aids [16, 17], we assume a constant
input level at t < 0 and right after the transition,
i.e. a step function of the input level.

x(t) =

{

x1 t < 0

x2 t > 0
(13)

We rewrite it using the standard Heaviside step func-
tionH(t), which is defined to be 0 when its argument
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is negative and unity when it is positive:

x(t) = (x2 − x1)H(t) + x1 (14)

Next we shall use the Heaviside definition to find the
time derivative of the input [18]:

dx

dt
= (x2 − x1)δ(t) = ∆xδ(t) (15)

Where δ(t) is Dirac delta function.

The hard kneepoint in eq. 2 makes ys non-
differentiable in K. However, we can find expres-
sions for inputs below and above it:

∂ys

∂x
=

{

1 x(t) < K
1
C x(t) > K

(16)

We know from eq. 12 that our equation becomes
trivial for the region below the kneepoint and we
shall focus on the region above it.

Using eq. 12, 15 and 16 we shall write the particular
equation of our step input:

p′(t) +
1

τ
p(t) = ∆x

(

1

C
− 1

)

· δ(t) (17)

This equation can be solved using the Laplace trans-
form, by applying it on both sides [18]. We set:

L [p(t)] = P (s) s =
1

t
(18)

and eq. 17 becomes:

L

[

p′(t) +
1

τ
p(t)

]

= L

[

∆x

(

1

C
− 1

)

· δ(t)

]

=

= sP (s)− p(0) +
1

τ
P (s) = ∆x

(

1

C
− 1

)

(19)

Rearranging eq. 19 and applying the inverse Laplace
transform to find the exact solution to p(t) results
in:

p(t) = L
−1 [P (s)] = L

−1













∆x

(

1

C
− 1

)

+ p(0)

s+
1

τ













=

=

[(

1

C
− 1

)

+ p(0)

]

e−t/τH(t) (20)

Where we used the Heaviside step function H(t)
once again. Finally we set the initial conditions,
p(0−) = 0, slightly before the step ensues. De-
termining the relevant input step depends on its
relation to the kneepoint and whether it is an attack
or release decay at hand. We shall use eq. 20 in eq.
5 with the various possibilities of the step relative
to the kneepoint, given in eq. 2:

yd(t < 0) = ys(x1)
yd(t > 0) =

=



















(

x2−K
C +K

)

− (x2 − x1)
(

1
C − 1

)

e−t/τR K < x2 < x1

x2 − (K − x1)
(

1
C − 1

)

e−t/τR x2 < K < x1
(

x2−K
C +K

)

− (x2 − x1)
(

1
C − 1

)

e−t/τA K < x1 < x2
(

x2−K
C +K

)

− (x2 −K)
(

1
C − 1

)

e−t/τA x1 < K < x2

(21)

We can see from the result that the compressor out-
put target equals to the input and after the attack or
release decays have elapsed, the second term would
effectively vanish and the dynamic output converges
to the static output (first term), as required.

3.5. Hearing Aids Applicability of the Model

The following notes are observations made on real
compressors on the market with a special emphasis
on hearing aids.

In practice, attack and release time constants may
have to be scaled, depending on the exact defini-
tion of attack and release that is being used. As
the standard hearing aid definitions are inconsistent
[16, 17], different scaling factors may be used. Decay
functions are normally given time constants accord-
ing to their relative decay compared to their initial
state (for example, in reverberation time or capaci-
tor discharge decay). However, complying with both
standards, which require an absolute value of the de-
cay p, such as 2 or 4dB below the steady state level,
time constants as are expressed in the above equa-
tions depend on the kneepoint and on the compres-
sion ratio, in addition to the predefined start and
end levels.

A comment should be made also about the de-
cay functional form in compressors. Two decay
shapes are observed in technical audiological liter-
ature about compression: linear and exponential.
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Physical decay phenomena are exponential and au-
dio compression-laws are predominantly logarith-
mic. However, the type of decay seen is inconsistent
in the descriptions and is generally not discussed.
In the commercial compressors we show here (see
4.1 below) – both standalone and in hearing aids
and FM systems for hearing aids – we observed both
types of decays. Floru [3] discusses a linear and log-
arithmic implementation of the detection and gain
control circuitry. He derives an expression for the
transient decay of a step input, which is non-linear.
When converted to decibels, however, the expression
becomes of the form A log(1+Be−t/τ ), which is still
non-linear. Therefore, a linear decay in compressors
measured may suggest a completely controlled decay
by a computer program, which works in the logarith-
mic domain. This range of functionalities affects the
measured values of attack and release transient de-
cays and comparison between the two kinds, even
if their nominal time constants are identical, is not
straightforward. We do not know what is the per-
ceived difference between the two kinds of decay.

4. SIMULATIONS AND MEASUREMENTS

Using a few arbitrary real compressors, we would
like to see if our model yields overlapping responses
to them, directly employing realistic values to its
parameters. In this section the basic equations were
tested: The dynamic solution of eq. 21 along with
the static compression law approximated by eq. 2
and the governing differential equation, eq. 12 in its
discrete form.

4.1. Hearing Aid and FM Compressors

The compressor was tested against two arbitrary
hearing aids and an assistive-listening-device (ALD)
frequency modulation radio system (FM) for hearing
impaired.

The input-output curve was measured in a small
anechoic chamber, B&K 4232 Anechoic Test Box.
A 1/2” reference condenser microphone, B&K 4192
with a B&K 2669 preamplifier, was placed in front
of the chamber loudspeaker. The loudspeaker was
driven through a power amplifier, Rotel RB-991,
which was fed by the signal generator of an audio
analyzer, B&K 2012 that was also connected to the
microphone. Using the reference microphone, the

loudspeaker was set to give a known SPL at the ref-
erence point. Either the FM transmitter microphone
or the HA microphone was placed on this point. The
output from the hearing aid receiver was connected
to the same preamplifier, but via an IEC 711 cou-
pler, B&K 4157 Ear Simulator. Using the calibrated
output of the amplifier and coupler microphone, the
I/O curves of the hearing aid could be measured ac-
curately by the audio analyzer sine sweep. Sweeps
were performed at 1 kHz with 1dB steps.

The FM system I/O curve was measured by supply-
ing its receiver from a battery directly via its DAI
male jack (“Euro Pin”), loaded by a standard 4.3kΩ
resistor and tapped for its audio output. The out-
put voltage was recorded by the direct channel of
the audio analyzer.

The step recording setup was very similar to the
one above, except for the replacement of the audio
analyzer by a soundcard. Digidesign’s Digi Pre, Digi
192 soundcard hardware and Pro Tools HD software
were used to generate the sine steps. The output
from the coupler was powered by a B&K 5935L Dual
Mic Supply and recorded on a mono channel of the
software and later analyzed in Matlab.

Figures 4-6 show the release measurements of a 1kHz
step between 100 and 60dB SPL. The iterative pro-
cess was done using the I/O curve of the instru-
ments, from which the kneepoints and compression
ratios could be extracted. An example for this curve
in conjunction with the release curve of the FM sys-
tem is given in figure 4. Fitting the I/O accurately
allowed, in this case, to reproduce also the dynamic
release curve, provided that the time constant is
added (iterated). A makeup gain term that was
added to the static compression equation includes
also the system microphone sensitivity, amplification
and conversion from dB SPL input to dBV output.

Figure 5 shows an example for a hearing aid with
an exponential decay. In this case, the measurement
was dirty and the release undershoot is modulated
by noise. However, the trend is visible. The model
parameters were also extracted from the I/O curves
and the time constant iterated. Here, the system has
compression ratio below the kneepoint (WDRC) and
so the static equation used is the most general one.

Figure 6 shows a limitation of the model, when com-
pared to a linear release decay. The exponential de-
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Fig. 4: Static curve and model of Amigo T5-R5
FM system and release decay measured with a 100
to 60 dB SPL step, according to the IEC hearing aid
standard[17].

cay obviously does not compare too well to it and
the usage of the model is restricted to qualitative or
boundary effects.

4.2. Comparison to a Plug-In Compressor

In order to examine further the model behavior, it is
also compared with a commercial plug-in hi-fidelity
compressor (Waves C1), which was run internally on
a Pro Tools LE virtual studio environment software
(by Digidesign). This kind of plug-in may be used
extensively by, for instance, sound engineers for the
production and mixing of music and films.

The setup included an internal sine signal genera-
tor, which was shaped according to the measurement
specifications. This signal was the input to the com-
pressor. The commercial compressor used included
a parametric setting for attack, release, ratio, knee-
point and makeup gain. The makeup gain was kept
on zero. The knee is soft on this compressor and
therefore not so well-defined and its exact level had
to be reiterated for best fit. Other nominal paramet-
ric values had to be scaled a bit to obtain a better
match. Nevertheless, fitting was done manually and
only crudely, since the purpose of the comparison is
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Fig. 5: Siemens Acuris hearing aid release decay
measured with a 100 to 60 dB SPL step, according
to IEC[17]. Although measurement appears noisy,
the trend is clear
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Fig. 6: Siemens Music Power hearing aid release
decay measured with a 100 to 60 dB SPL step, ac-
cording to IEC[17]. The decay in this hearing aid is
linear and not exponential as before and thus match-
ing the model to it is incompatible, in terms of the
recovery speed and the undershoot of the model vs.
the aid
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largely qualitative and does not pertain to this or
that specific compressor algorithm.

The output was recorded internally on a virtual
track. The 44.1 kHz, 24-bit WAV output recordings
were exported to Matlab, where their RMS levels
were calculated and visually compared.

4.2.1. Step Response

The step response was set to vary between -5dBFS
and -35dBFS (peak values). We recall that the
model is ignorant to the type of signal detected (peak
or RMS), so in order to obtain a correct result both
model and recording have to be the same. Since the
step is a simple sine, we know that the difference
here would be a -3.01dB correction of the peak-to-
RMS value (the crest factor of a pure sine).

In figures 7-10 all attack and release time constants
were scaled to be 80% of their nominal value. Deci-
bels on the ordinate represent peak values. The
nominal kneepoint values are in fact 0.8-1.7 dB com-
pression points, already on the compression curves.
Those values may also reflect peak detection (rather
than RMS), but we cannot state that with certainty
yet. So the actual mathematical knee was iteratively
extracted, using eq. 2 and 3.

All eight compressors show a very good fit, given the
above tweaks. The very short 10ms release shows an
increased undershoot compared to the measurement.
The release time prediction is a little slower than the
measured one. However, it appears that the very
short release time is still modeled well, opposite to
results obtain with another model [5]. Additionally,
in the particular compressor tested here, the attack
decay indeed follows the same exponential rule, con-
trary to a linear decay (in the log domain) suggested
earlier [4]. That is mention not in order to show that
one model is more correct than the other, but rather
to underline the many possibilities of implementing
compression.

4.2.2. Speech Response

A final qualitative comparison and test was made us-
ing a speech sample as input to the discrete version
of the governing differential equation of the com-
pressor, which becomes a difference equation with a
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Fig. 7: Dynamic behavior of a single compressor:
measurement on a commercial plug-in vs. prediction
according to the model
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Fig. 8: Dynamic behavior of a single compressor:
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according to the model
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Fig. 9: Dynamic behavior of a single compressor:
measurement on a commercial plug-in vs. prediction
according to the model
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Fig. 10: Dynamic behavior of a single compressor:
measurement on a commercial plug-in vs. prediction
according to the model

hard-knee compression law:

p(n) =
p(n− 1) + [x(n)− x(n− 1)]

(

1
C(n) − 1

)

1 + 1
τn

(22)
where n designates a sample, C(n) is the instan-
taneous compression ratio and τn is the equivalent
attack/release time in samples. In figure 11 the com-
pression effect is shown side by side the same Waves
commercial soft-knee compressor. Signal amplitudes
are compared as well as the instantaneous gains of
the compressors, according to different envelope de-
tection techniques. Preliminary simulations showed
the best fit with the peak detection (no dynamic cor-
rection is needed for the nominal kneepoint). The
RMS and averaging detectors needed a correction for
the nominal kneepoint by -7dB. As -20dB appeared
to be more accurate for peaks, 7dB is the approxi-
mate peak-to-RMS value (crest factor) of this speech
sample. None of the predictions is completely sim-
ilar to the commercial compressor that was poten-
tially combined with a smoothing (or decimation)
algorithm and an RMS evaluator. Additionally, the
different knee implementation – soft vs. hard – also
contributes to the variation.

Previous comparisons [5] showed perhaps a better
fit, but did not include a direct gain comparison and
they included smoothing algorithms, which are not
implemented here. However, we get a reasonable fit
to the commercial compression, which is enough to
indicate that the expression we got is indeed able to
correspond to versatile dynamic inputs and is not
limited to step functions.

5. CONCLUSIONS

A model for compression is introduced, which was
derived using geometric considerations and not ac-
cording to a specific compressor topology. The
model uses envelopes as input and output variables
and thus skips the level detector element, which may
assume an arbitrary detection method. Spectral ef-
fects of compression are not factored in directly. An
emphasis was given to have all model parameters
reflect those that are displayed in common specifica-
tion sheets and parametric user interfaces of various
commercial compressors.

Modeling was divided into static and dynamic solu-
tions. The static solution is a repetition of known
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Fig. 11: Dynamic behavior of a single compressor:
measurement on a commercial plug-in vs. predic-
tions according to the discrete version of the dif-
ferential equation of the model and various primi-
tive envelope detectors. The parameters were: C=3,
τR = 500ms, τA = 1ms, K=-20dBFS. The sample
contains English male saying:“Come to”. RMS de-
tection was done with a 2-pole, 50Hz, Butterworth
lowpass filter. Peak detection was done with no dec-
imation using Peakdet[19], set to a tolerance of 0.15.
Averaging detection was done using a moving aver-
age of 200 samples.

compressor properties. The dynamic treatment con-
verges into an ordinary differential equation that is
both visibly more intuitive and mathematically eas-
ier to deal with analytically. The particular response
for a step input is then calculated accurately, as an
example, which results in a typical exponential de-
cay function.

The general and particular model results are all
tested against real compressors of hearing aids and
an FM system for hearing aids and a plug-in effect
used for audio mixing. The model with the nominal
compression parameters shows a satisfactory conver-
gence to the measurements with only minor tweak-
ing.

The model is limited, though, to exponential de-
cays and has to be used with the adequate signal
levels, representative of the omitted signal detector
section. Moreover, the model does not account di-
rectly for multi-band compression, which is common
in hearing aids. Effects resulting from the band-
limited signals should be computed separately using
the adequate filters in combination with the other-
wise broadband compression model.
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